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Abstract— In recent years, reversible computing has established itself as a promising research area and emerging technology. This is 
motivated by a widely supported prediction that conventional computer hardware technologies will reach their limits in the near future. This 
paper proposes a transformation based synthesis approach for realizing conservative reversible functions using SWAP and Fredkin gates. 
The proposed SWAP and Fredkin gates approach is compared with NOT, CNOT and Toffoli gates approach. Experimental results show 
that synthesizing conservative reversible functions using SWAP and Fredkin gates is more efficient than comparable approaches using 
NOT, CNOT and Toffoli gates. 
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1 INTRODUCTION AND MOTIVATION                                                               
HE amount of information processed by digital devices 
continues to increases over time. In order to process 
this increasing volume of information, the number of 

components fabricated on integrated circuits of a digital 
device is also increasing over time. Over the past few dec-
ades, the size of the components has been reduced in order 
to increase the density of these components on integrated 
circuits. However, this pattern cannot continue forever be-
cause the current technology is approaching the physical 
limits of computing [1]. Limitations of traditional compu-
ting, such as heat dissipation, can become an obstacle for 
the further development of current technology [1, 2]. Re-
versible computing [2] offers a solution to this potential 
deadlock of further development in traditional computing. 

The concept of synthesis is very important in designing 
reversible logic circuits. Synthesis refers to the transfor-
mation of a logic function into a corresponding logic cir-
cuit. According to some synthesis approaches, if a logic 
function is irreversible, the first step of a logic synthesis is 
to transform the function into its reversible equivalent. One 
or more garbage lines and/or constant inputs are included 
in the original irreversible function in order to make the 
function reversible. The final step is to transform the re-
versible function into a logic circuit consisting of one or 
more reversible gates which are connected in cascade. The 
resulting circuit is a reversible circuit. There can be more 
than one reversible circuit for implementing a single func-
tion. Two important factors play a significant role in trans-
forming irreversible functions into reversible circuits: (1) 
the number of garbage lines and/or constant inputs, which 
are included in order to transform the irreversible function 
to a reversible one; and (2) the use of different reversible 
logic gates for realizing the  reversible function by a re-

versible circuit. During the process of transforming an irre-
versible function into the corresponding reversible func-
tion, it is necessary to observe the output of the irreversible 
function. If the output of an irreversible function has a 
maximum number of k identical patterns, the minimum 
number of garbage lines required to make the function re-
versible is log2k [3]. A number of logic synthesis techniques 
in reversible logic have been proposed as described in [4]. 
In this work we focus on transformation based logic synthe-
sis. 

 
The organization of this paper is as follows: Section 2 

presents the fundamentals of reversible logic; Section 3 de-
scribes the basis of the transformation based synthesis; Sec-
tion 4 introduces our proposed approach; Section 5 and 
Section 6 present the experimental result; Section 7 con-
cludes the paper and provides future  directions.  

2 BACKGROUND 
2.1 Reversible Logic 
A reversible logic function has the form 𝑓𝑓:𝐵𝐵𝑛𝑛 → 𝐵𝐵𝑛𝑛, where 
n is a non-negative integer and the domain 𝐵𝐵 = {0,1}, with 
the key feature being that the function is bijective. More 
specifically, the number of inputs and the number of out-
puts of a reversible function are exactly the same. In partic-
ular, there is always a distinct output state for each of the 
possible input states [2]. When the number of 1s in the in-
put and the output are equal, such a function is called a 
conservative function. 

2.2 Reversible Logic Gates 
Let 𝑋𝑋 ≔ {𝑥𝑥1, 𝑥𝑥2, … … , 𝑥𝑥𝑛𝑛} be the set of Boolean variables. 
Then a reversible gate has the form 𝑔𝑔(𝐶𝐶,𝑇𝑇), where 𝐶𝐶 =
{𝑥𝑥𝑖𝑖1, … . . , 𝑥𝑥𝑖𝑖𝑖𝑖} ∈ 𝑋𝑋 is the set of control lines and T=
�𝑥𝑥𝑗𝑗1, … . . , 𝑥𝑥𝑗𝑗𝑗𝑗� ∈ 𝑋𝑋 with 𝐶𝐶 ∩ 𝑇𝑇 = ∅ is the set of target lines [8 
pacrim]. Two commonly used reversible gates are Toffoli 
gates and Fredkin gates. A Toffoli gate with no controls is a 
NOT gate i.e. 𝑔𝑔(0, 𝑥𝑥𝑗𝑗1). Similarly, a Toffoli gate 𝑔𝑔(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑗𝑗1) 
can be thought of as a controlled NOT (or CNOT) gate, and 
𝑔𝑔({𝑥𝑥𝑖𝑖1, … . , 𝑥𝑥𝑖𝑖𝑛𝑛}, 𝑥𝑥𝑗𝑗1) is a 𝑛𝑛-bit Toffoli gate. A Fredkin gate 
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with no controls is a SWAP gate 𝑔𝑔(𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2), which inter-
changes the two target input bits at output. A n-bit positive 
control Fredkin gate 𝑔𝑔({𝑥𝑥𝑖𝑖1, … … , 𝑥𝑥𝑖𝑖𝑛𝑛}, 𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2) interchanges 
the two target bits at output when all the control inputs are 
equal to 1. A reversible gate may also have negative control. 
In this case the gate becomes active when negative control 
has a value of 0. 

2.3 Cost Metrics 
Two important metrics used to compare reversible circuit 
implementations are gate count and quantum cost. The 
gate count (GC) is the number of gates in a circuit and the 
quantum cost (QC) is the number of basic quantum gates 
required to implement macro-level reversible gates such as 
the Toffoli and Fredkin gates [5, 6]. For example, the QC of 
1-CNOT gate is 1, and the QC of a SWAP gate is 3. The QC 
of a (3 × 3) Toffoli and a (3 × 3) Fredkin gates is 5 [7].  

 
 
 
 
 
(a) NOT gate   (b) CNOT gate 
 
 
 
 
 
 
 
 
 
 
 

(c) n-bit Toffoli gate 
 
 
 
 
 
 
 
 

(d) SWAP gate          (e) 3-bit Fredkin gate 

3 THE TRANSFORMATION BASED SYNTHESIS 
APPROACH 

A transformation based approach [8] takes as its input a 
truth table of a reversible function, and applies reversible 
logic operations to transform the function into an identity 
function. The gates which perform these logic operations 
during the tranformation constitute the circuit that imple-
ments the input reversible function. The gates appear in the 
circuit in the same order in which the logical operations are 
performed during transformation. Before the synthesis 
takes place if a function is not reversible, the first step is to 

transform the irreversible function into a reversible func-
tion. Works such as proposed by Maslov et al. [3] and Mil-
ler et al. [9] describe techniques for this. One of the major 
advantages of a transformation-based synthesis approach is 
that the process of generating circuits based on this ap-
proach does not create any garbage output or constant in-
put lines. Thus, in terms of the number of inputs and out-
puts lines, the size of the circuit generated by a transfor-
mation based synthesis is minimal. The transformation 
based synthesis algorithm was proposed by Miller et al. [8]. 
The authors demonstrated two variations: a basic algorithm 
and a bidirectional algorithm, both based on the NCT gate 
library. In the basic algorithm, the reversible logic opera-
tions are applied to the output of the function’s truth table. 
The following is the basis of transformation based logic 
synthesis approach. 

Step 0: If 𝑓𝑓(0) = 0, no transformation is required; go to 
step 1. If 𝑓𝑓(0) ≠ 0, apply a (1 × 1) Toffoli gate (NOT gate) 
in order to achieve 𝑓𝑓(0) = 0. 

Step 1: For 1 ≤ 𝑖𝑖 < 2𝑚𝑚 − 1: If 𝑓𝑓(𝑖𝑖) = 𝑖𝑖, no transformation 
is required and proceed to next i. If 𝑓𝑓(𝑖𝑖) ≠ 𝑖𝑖, apply the 
smallest (𝑘𝑘 × 𝑘𝑘) Toffoli gate, 𝑘𝑘 = 2 to n in order to make 
𝑓𝑓(𝑖𝑖) = 𝑖𝑖. 

 
Table 1: Truth table of a (3 × 3) reversible function. 

Input Output 
 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖 𝑎𝑎𝑜𝑜 𝑏𝑏𝑜𝑜 𝑐𝑐𝑜𝑜  

(0) 0 0 0 0 0 0 (0) 
(1) 0 0 1 1 0 0 (4) 
(2) 0 1 0 0 0 1 (1) 
(3) 0 1 1 0 1 1 (3) 
(4) 1 0 0 0 1 0 (2) 
(5) 1 0 1 1 0 1 (5) 
(6) 1 1 0 1 1 0 (6) 
(7) 1 1 1 1 1 1 (7) 
 
The choice of gate during each step of transformation is 

crucial in order to maintain convergence. The gate chosen 
in each step of transformation must not change the order of 
bits of the previous steps. Consider the (3 × 3) reversible 
function 𝑓𝑓 = ∑(0,4,1,3,2,5,6,7) in Table 1. The circuit which 
is generated by following the basic transformation algo-
rithm is presented in Figure 2. 

4 SF BASED SYNTHESIS APPROACH 
Before describing our proposed approach, it is important to 
observe a significant property of the function shown in Ta-
ble 1. The truth table of the function shows that for each 
row, the number of 1s in the input is equal to the number of 
1s in the output. Thus, the function is a conservative func-
tion. Our hypothesis is that a circuit realization for a con-
servative reversible function will be more efficient if we use 
SF gates instead of NCT gates. Thus we propose a SF gate 
based transformation approach. The underlying idea of SF-
based transformation synthesis is the same as the approach 
described previously in this chapter. The difference is that 
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instead of using the logic gates from the NCT gate family, 
we use only SWAP and Fredkin gates to realize the trans-
formations. While NCT gates manipulate bits by inverting 
the bits, SF gates interchange the bits when the control 
points of these gates satisfy the necessary condition. Since a 
conservative function has an equal number of 1s in the in-
put and the output, our hypothesis is that the interchange 
of bits rather than the inversion of bits during the process 
of transformation will generate efficient circuits. The trans-
formation based approach involves the mapping between 
two values consisting of the same number of 1s. The output 
of a SF gate consists of the same number of 1s as the input. 
Thus, the SF gates will be more suitable and require fewer 
logical operations than NCT gates for mapping one value 
into another of a conservative function.  

As in the NCT version, the proposed approach examines 
one row of the truth table at each step. The objective is to 
make 𝑓𝑓(𝑖𝑖) = 𝑖𝑖, for 𝑖𝑖 = 0 to 2𝑛𝑛 − 1, where 𝑖𝑖 is the 𝑖𝑖-th row of 
a reversible function 𝑓𝑓 , and n is the number of in-
puts/outputs (bits) of the function. The following is the ba-
sis of SF gate base transformation approach. 

Step 0: Since the function is a conservative function, the 
first row of the truth table of the function will be 𝑓𝑓(0) = 0. 
Thus, no transformation is required and go to step 1. 

Step 1: For 𝑖𝑖 = 1: If 𝑓𝑓(1) = 1, no transformation is re-
quired. If 𝑓𝑓(1) ≠ 1, apply a SWAP gate in order to make 
𝑓𝑓(1) = 1. 

Step 2: Repeat for 𝑖𝑖 = 2 to 2𝑛𝑛 − 1: If 𝑓𝑓(𝑖𝑖) = 𝑖𝑖, no trans-
formation is required. If 𝑓𝑓(1) ≠ 1, apply a SWAP gate or 
the smallest (𝑘𝑘 × 𝑘𝑘) Fredkin gate in order to make 𝑓𝑓(𝑖𝑖) = 𝑖𝑖, 
where 𝑘𝑘 = 3 to 𝑛𝑛. One or more gates may be required in 
order to achieve 𝑓𝑓(𝑖𝑖) = 𝑖𝑖. 

 
Table 2: Transformation stages of the function in Table 1 

using SF based synthesis 
 

Output 
Step 0 Step 1 Step 2 Step 3 Step 4 

(i) (ii) (iii) (iv) (v) 
a b C 𝑎𝑎𝑜𝑜 𝑏𝑏𝑜𝑜 𝑐𝑐𝑜𝑜 𝑎𝑎1 𝑏𝑏1 𝑐𝑐1 𝑎𝑎2 𝑏𝑏2 𝑐𝑐2 𝑎𝑎3 𝑏𝑏3 𝑐𝑐3 𝑎𝑎4 𝑏𝑏4 𝑐𝑐4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 
0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 
0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 
0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 
1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1 
1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 --------- S(a,c) S(a,b) F(b;a,c) F(a;b,c) 

 
We use the same function from Table 1 to demonstrate 

the SF-based transformation synthesis. As before, the pro-
posed approach begins with the output of the function. 
Table 2 shows the transformation stages. In this table S(a;b) 
represents a SWAP gate with two targets, ‘a’ and ‘b’. 
F(a;b,c) represents a Fredkin gate with a control point on 
line, ‘a’, and two targets on lines ‘b’ and ‘c’. The resulting 

circuit realization of the function from Table 1 is displayed 
in Figure 3. 

 
 
 
 
 
 
 
 
 
Figure 2: Circuit based on transformation based synthe-

sis 
 
 
 
 
 
 
 
 
Figure 3: Circuit based on SF based synthesis 

5 COMPARISON OF TRANSFORMATION BASED 
APPROACHES  

It is important to observe that the function in Table 1 is a 
conservative function and Figures 2 and 3 show two circuit 
designs for this function. In Figure 3, we have a gate count 
of 4 as compared to a gate count of 12 for the circuit in Fig-
ure 2. The quantum cost of the implementation in Figure 3 
is (2x3)+(2x5) = 16, where the quantum cost for the circuit 
realization in Figure 2 is 28. The percentages of decrease in 
gate count and quantum cost are 67% and 43% respectively, 
which is a very significant improvement.  

In order to compare the SF based transformation ap-
proach with NCT based transformation from a wider per-
spective, we have generated all possible (3 × 3) conserva-
tive reversible functions. We have realized all 36-(3 × 3) 
conservative functions using both algorithms. The highest 
percentage of reduction in gate count is 67% for more than 
half of the (3 × 3) conservative reversible functions. The 
ability of changing two bits at a time gives SF gates an ad-
vantage over the NCT gate family for realizing conserva-
tive reversible circuits. 

SF based synthesis also performs better than NCT based 
synthesis when comparing quantum cost. Among the 36 
functions, we have achieved lower QC for almost 70% of 
the functions. For the remaining functions, the QC is the 
same for both approaches. There is not a single instance 
where the NCT based synthesis performs better than our 
proposed approach. The highest percentage of decrease in 
quantum cost is 70% and the average percentage of reduc-
tion of quantum cost is 29%. 

As mentioned above, the proposed transformation algo-
rithm using the SF gate family follows the greedy ap-
proach. We have designed our algorithm in this way in or-
der to offer a fair comparison, since the basic transfor-
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mation based synthesis algorithm which is proposed in [8] 
also follows the greedy approach. At every step of trans-
formation, the algorithm selects a gate which costs less in 
terms of quantum cost. For example, if we observe column 
(ii) of Table 2, we need to transform 100 into 010. There are 
two choices for this mapping. We could use either a SWAP 
gate 𝑆𝑆(𝑎𝑎, 𝑏𝑏) or a negative controlled Fredkin gate, 𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏). 
The proposed SF gate based transformation selects a SWAP 
gate, 𝑆𝑆(𝑎𝑎, 𝑏𝑏) because a SWAP gate has lower quantum cost 
than a Fredkin gate. However, if we use a  𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏) at this 
stage, we get a circuit which is presented in Figure 4. The 
use of F  𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏) gate reduces the quantum cost from 16 to 
13 as we compared with the circuit in Figure 3. Moreover, 
one less gate is needed in this circuit realization.The circuit 
in Figure 5 is even more simplified design for the reversible 
function from Table 1. Figure 5 shows that the gate count is 
2 and the quantum cost is 10. Now if we compare the gate 
count and quantum cost of Figure 5 with that of the NCT 
gate based basic transformation synthesis (Figure 2), the 
gate count has been reduced from 12 to 2, a 6 times reduc-
tion. The quantum cost has been reduced from 28 to 10, 
which is an improvement of almost a factor of 3. 
 

 
 
 
 
 
 
 
Figure 4: Another circuit of the function in Table 1 
 
 
 
 
 
 
 
 
 
Figure 5: More efficient circuit for function in Table 1 
 

As mentioned above, the proposed transformation algo-
rithm using the SF gate family follows the greedy ap-
proach. We have designed our algorithm in this way in or-
der to offer a fair comparison, since the basic transfor-
mation based synthesis algorithm which is proposed in [8] 
also follows the greedy approach. At every step of trans-
formation, the algorithm selects a gate which costs less in 
terms of quantum cost. For example, if we observe column 
(ii) of Table 2, we need to transform 100 into 010. There are 
two choices for this mapping. We could use either a SWAP 
gate 𝑆𝑆(𝑎𝑎, 𝑏𝑏) or a negative controlled Fredkin gate, 𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏). 
The proposed SF gate based transformation selects a SWAP 
gate, 𝑆𝑆(𝑎𝑎, 𝑏𝑏) because a SWAP gate has lower quantum cost 
than a Fredkin gate. However, if we use a  𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏) at this 
stage, we get a circuit which is presented in Figure 4. The 
use of F  𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏) gate reduces the quantum cost from 16 to 

13 as we compared with the circuit in Figure 3. Moreover, 
one less gate is needed in this circuit realization.The circuit 
in Figure 5 is even more simplified design for the reversible 
function from Table 1. Figure 5 shows that the gate count is 
2 and the quantum cost is 10. Now if we compare the gate 
count and quantum cost of Figure 5 with that of the NCT 
gate based basic transformation synthesis (Figure 2), the 
gate count has been reduced from 12 to 2, a 6 times reduc-
tion. The quantum cost has been reduced from 28 to 10, 
which is an improvement of almost a factor of 3.  

We have also generated all possible 414720 conservative 
(4 × 4) reversible function. However unlike the case of (4 ×
4) functions, there are some circuit realizations where the 
gate count and quantum cost increase when using SF gate 
based transformation synthesis. Among all the (4 × 4) con-
servative reversible functions, the quantum cost increases 
for 27213 (6.5%) functions and the gate count increases for 2 
functions. The highest percentage of reduction in gate 
count by using our proposed synthesis algorithm is 87% 
and the reduction in gate count, on average, is 61%. We 
achieve the highest percentage of reduction of quantum 
cost is 87%. The average percentage of decrease of quantum 
cost over all 414720 functions is 35%. 

6 COMPARISON OF SF BASED APPROACH WITH 
EXACT SYNTHESIS APPROACH 

We have also compared the results from our proposed SF-
based approach with the results from applying an exact 
synthesis approach [10] available in RevKit [11]. The com-
parison is shown in Table 3. The exact approach results in a 
circuit implementation with minimal gate count using the 
NCT gate library. There is no known exact approach that 
uses the SF gate library. There is not a single instance where 
the exact synthesis generates circuits with lower GC than 
the SF based transformation approach. The highest per-
centage of reduction in GC is 67%. However, the average 
percentage of reduction of GC using the SF based synthesis 
is 54%. The negative values in the table indicate the incre-
ment in QC using SF based synthesis over exact synthesis. 
The QC increases in the case of 10 functions out of all 36 
conservative functions. The highest percentage of reduction 
in QC using our proposed synthesis approach is 67% and 
the percentage of reduction in QC on average is 8%. The 
reduction in GC can be explained by the fact that SF gates 
require fewer operations to implement swaps, which are 
the main operations carried out in conservative functions. 
However in general, SF gates have higher QC than their 
NCT equivalents, so there is less saving in QC. For exam-
ple, a SWAP gate 𝑆𝑆(𝑏𝑏, 𝑐𝑐) can be used in order to transform 
(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 010 into 001. The GC and the QC for a single 
SWAP gate are 1 and 3 respectively. However, two NCT 
gates, 𝑇𝑇(𝑏𝑏; 𝑐𝑐) and 𝑇𝑇(𝑐𝑐; 𝑏𝑏), will be required in order to trans-
form (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 010 into 001. In this case GC and QC are 2. 
Thus the GC is reduced by using the SF gate family, while 
the QC (for this example) is not.  
 

Table 3: Performance comparison of the minimal circuits 
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generated using exact synthesis with the circuits generated 
using SF gate based synthesis. 

 
 Exact syn-

thesis 
SF based 
synthesis 

Reduction Percentage of 
decrease 

No GC QC GC QC GC QC GC QC 
1 6 14 3 13 3 1 50.00 7.14 
2 6 10 2 8 4 2 66.67 20.00 
3 6 14 3 13 3 1 50.00 7.14 
4 6 10 2 8 4 2 66.67 20.00 
5 3 3 1 3 2 0 66.67 0.00 
6 4 8 2 8 2 0 50.00 0.00 
7 6 10 3 11 3 -1 50.00 -10.00 
8 7 15 4 16 3 -1 42.86 -6.67 
9 6 10 3 11 3 -1 50.00 -10.00 

10 6 6 2 6 4 0 66.67 0.00 
11 6 10 3 11 3 -1 50.00 -10.00 
12 7 15 4 16 3 -1 42.86 -6.67 
13 6 14 3 13 3 1 50.00 7.14 
14 6 10 2 8 4 2 66.67 20.00 
15 3 3 1 3 2 0 66.67 0.00 
16 6 10 2 8 4 2 66.67 20.00 
17 6 14 3 13 3 1 50.00 7.14 
18 4 8 2 8 2 0 50.00 0.00 
19 6 10 3 11 3 -1 50.00 -10.00 
20 6 6 2 6 4 0 66.67 0.00 
21 6 10 3 11 3 -1 50.00 -10.00 
22 7 15 4 16 3 -1 42.86 -6.67 
23 6 10 3 11 3 -1 50.00 -10.00 
24 7 15 4 16 3 -1 42.86 -6.67 
25 3 3 1 3 2 0 66.67 0.00 
26 6 10 2 8 4 2 66.67 20.00 
27 6 14 3 13 3 1 50.00 7.14 
28 6 10 2 8 4 2 66.67 20.00 
29 6 14 3 13 3 1 50.00 7.14 
30 4 8 2 8 2 0 50.00 0.00 
31 3 15 1 5 2 10 66.67 66.67 
32 4 20 2 10 2 10 50.00 50.00 
33 3 7 1 5 2 2 66.67 28.57 
34 4 20 2 10 2 10 50.00 50.00 
35 3 7 1 5 2 2 66.67 28.57 
36 0 0 0 0 0 0 0 0 

 

7 CONCLUSTION AND FUTURE WORKS 
Transformation based synthesis offers function realization 
without including any additional garbage lines to circuits. 
In this paper we have presented a transformation based 
synthesis approach based on SF gates to realize conserva-
tive reversible functions. We have generated all possible 3-
bit and 4-bit reversible functions and realized these func-
tions with both our proposed approach and the approach 
proposed in [8]. The approach presented in [8] is based on 
the NCT gate families. Our experimental results suggest 
that realization of conservative functions with SF gates is 

more efficient than NCT gates in terms of GC and QC. We 
have also compared the circuits generated using exact syn-
thesis with SF based synthesis for implementing 3-bit con-
servative functions. Experimental results show that SF 
based synthesis generates significantly more efficient cir-
cuits than exact synthesis when comparing gate count, alt-
hough slightly less so when comparing quantum cost. This 
is likely due to the high quantum costs of the SF gate fami-
ly. Our proposed SF based synthesis follows the principle 
of the NCT transformation based synthesis presented in [8]. 
A NCT transformation based synthesis approach works by 
mapping a reversible function into an identity function. 
During the process of transformation the operations per-
formed at each stage must not affect the previous stages. 
One or more logic gates are applied to perform the logical 
operations at each stage. We have shown in Section 5 that 
the choice of gates at each stage is very important in order 
to achieve a simplified circuit.  

The outcome of this work indicates that the synthesis 
process in reversible logic could be more efficient if we 
know the class of a reversible function in advance. There-
fore, classifying reversible functions and using the benefitts 
of SF-gates in circuit realization for different classes of 
functions will be an important area of future study. In addi-
tion, improving the gate selection process during each 
stage of the transformation based synthesis is an another 
important area of further research. Lastly, generating min-
imal circuits using SF based exact synthesis is an open area 
of further research. 
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