
International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 46
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

SWAP-Fredkin Based Synthesis in Reversible
Logic

Md Asif Nashiry, Jacqueline E. Rice

Abstract— In recent years, reversible computing has established itself as a promising research area and emerging technology. This is
motivated by a widely supported prediction that conventional computer hardware technologies will reach their limits in the near future. This
paper proposes a transformation based synthesis approach for realizing conservative reversible functions using SWAP and Fredkin gates.
The proposed SWAP and Fredkin gates approach is compared with NOT, CNOT and Toffoli gates approach. Experimental results show
that synthesizing conservative reversible functions using SWAP and Fredkin gates is more efficient than comparable approaches using
NOT, CNOT and Toffoli gates.

Index Terms—Revesible logic, logic gates, tranformation based synthesis, conservative functions, .

—————————— ——————————

1 INTRODUCTION AND MOTIVATION
HE amount of information processed by digital devices
continues to increases over time. In order to process
this increasing volume of information, the number of

components fabricated on integrated circuits of a digital
device is also increasing over time. Over the past few dec-
ades, the size of the components has been reduced in order
to increase the density of these components on integrated
circuits. However, this pattern cannot continue forever be-
cause the current technology is approaching the physical
limits of computing [1]. Limitations of traditional compu-
ting, such as heat dissipation, can become an obstacle for
the further development of current technology [1, 2]. Re-
versible computing [2] offers a solution to this potential
deadlock of further development in traditional computing.

The concept of synthesis is very important in designing
reversible logic circuits. Synthesis refers to the transfor-
mation of a logic function into a corresponding logic cir-
cuit. According to some synthesis approaches, if a logic
function is irreversible, the first step of a logic synthesis is
to transform the function into its reversible equivalent. One
or more garbage lines and/or constant inputs are included
in the original irreversible function in order to make the
function reversible. The final step is to transform the re-
versible function into a logic circuit consisting of one or
more reversible gates which are connected in cascade. The
resulting circuit is a reversible circuit. There can be more
than one reversible circuit for implementing a single func-
tion. Two important factors play a significant role in trans-
forming irreversible functions into reversible circuits: (1)
the number of garbage lines and/or constant inputs, which
are included in order to transform the irreversible function
to a reversible one; and (2) the use of different reversible
logic gates for realizing the reversible function by a re-

versible circuit. During the process of transforming an irre-
versible function into the corresponding reversible func-
tion, it is necessary to observe the output of the irreversible
function. If the output of an irreversible function has a
maximum number of k identical patterns, the minimum
number of garbage lines required to make the function re-
versible is log2k [3]. A number of logic synthesis techniques
in reversible logic have been proposed as described in [4].
In this work we focus on transformation based logic synthe-
sis.

The organization of this paper is as follows: Section 2

presents the fundamentals of reversible logic; Section 3 de-
scribes the basis of the transformation based synthesis; Sec-
tion 4 introduces our proposed approach; Section 5 and
Section 6 present the experimental result; Section 7 con-
cludes the paper and provides future directions.

2 BACKGROUND
2.1 Reversible Logic
A reversible logic function has the form 𝑓𝑓:𝐵𝐵𝑛𝑛 → 𝐵𝐵𝑛𝑛, where
n is a non-negative integer and the domain 𝐵𝐵 = {0,1}, with
the key feature being that the function is bijective. More
specifically, the number of inputs and the number of out-
puts of a reversible function are exactly the same. In partic-
ular, there is always a distinct output state for each of the
possible input states [2]. When the number of 1s in the in-
put and the output are equal, such a function is called a
conservative function.

2.2 Reversible Logic Gates
Let 𝑋𝑋 ≔ {𝑥𝑥1, 𝑥𝑥2, … … , 𝑥𝑥𝑛𝑛} be the set of Boolean variables.
Then a reversible gate has the form 𝑔𝑔(𝐶𝐶,𝑇𝑇), where 𝐶𝐶 =
{𝑥𝑥𝑖𝑖1, … . . , 𝑥𝑥𝑖𝑖𝑖𝑖} ∈ 𝑋𝑋 is the set of control lines and T=
�𝑥𝑥𝑗𝑗1, … . . , 𝑥𝑥𝑗𝑗𝑗𝑗� ∈ 𝑋𝑋 with 𝐶𝐶 ∩ 𝑇𝑇 = ∅ is the set of target lines [8
pacrim]. Two commonly used reversible gates are Toffoli
gates and Fredkin gates. A Toffoli gate with no controls is a
NOT gate i.e. 𝑔𝑔(0, 𝑥𝑥𝑗𝑗1). Similarly, a Toffoli gate 𝑔𝑔(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑗𝑗1)
can be thought of as a controlled NOT (or CNOT) gate, and
𝑔𝑔({𝑥𝑥𝑖𝑖1, … . , 𝑥𝑥𝑖𝑖𝑛𝑛}, 𝑥𝑥𝑗𝑗1) is a 𝑛𝑛-bit Toffoli gate. A Fredkin gate

T

————————————————
• Md Asif Nashiry, Dept.of Mathematics and Computer Science, University

of Lethbridge, Alberta, Canada. E-mail:asif.nashiry@uleth.ca
• Jacqueline E. Rice, Dept.of Mathematics and Computer Science, University

of Lethbridge, Alberta, Canada. E-mail:j.rice@uleth.ca

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 47
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

with no controls is a SWAP gate 𝑔𝑔(𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2), which inter-
changes the two target input bits at output. A n-bit positive
control Fredkin gate 𝑔𝑔({𝑥𝑥𝑖𝑖1, … … , 𝑥𝑥𝑖𝑖𝑛𝑛}, 𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2) interchanges
the two target bits at output when all the control inputs are
equal to 1. A reversible gate may also have negative control.
In this case the gate becomes active when negative control
has a value of 0.

2.3 Cost Metrics
Two important metrics used to compare reversible circuit
implementations are gate count and quantum cost. The
gate count (GC) is the number of gates in a circuit and the
quantum cost (QC) is the number of basic quantum gates
required to implement macro-level reversible gates such as
the Toffoli and Fredkin gates [5, 6]. For example, the QC of
1-CNOT gate is 1, and the QC of a SWAP gate is 3. The QC
of a (3 × 3) Toffoli and a (3 × 3) Fredkin gates is 5 [7].

(a) NOT gate (b) CNOT gate

(c) n-bit Toffoli gate

(d) SWAP gate (e) 3-bit Fredkin gate

3 THE TRANSFORMATION BASED SYNTHESIS
APPROACH

A transformation based approach [8] takes as its input a
truth table of a reversible function, and applies reversible
logic operations to transform the function into an identity
function. The gates which perform these logic operations
during the tranformation constitute the circuit that imple-
ments the input reversible function. The gates appear in the
circuit in the same order in which the logical operations are
performed during transformation. Before the synthesis
takes place if a function is not reversible, the first step is to

transform the irreversible function into a reversible func-
tion. Works such as proposed by Maslov et al. [3] and Mil-
ler et al. [9] describe techniques for this. One of the major
advantages of a transformation-based synthesis approach is
that the process of generating circuits based on this ap-
proach does not create any garbage output or constant in-
put lines. Thus, in terms of the number of inputs and out-
puts lines, the size of the circuit generated by a transfor-
mation based synthesis is minimal. The transformation
based synthesis algorithm was proposed by Miller et al. [8].
The authors demonstrated two variations: a basic algorithm
and a bidirectional algorithm, both based on the NCT gate
library. In the basic algorithm, the reversible logic opera-
tions are applied to the output of the function’s truth table.
The following is the basis of transformation based logic
synthesis approach.

Step 0: If 𝑓𝑓(0) = 0, no transformation is required; go to
step 1. If 𝑓𝑓(0) ≠ 0, apply a (1 × 1) Toffoli gate (NOT gate)
in order to achieve 𝑓𝑓(0) = 0.

Step 1: For 1 ≤ 𝑖𝑖 < 2𝑚𝑚 − 1: If 𝑓𝑓(𝑖𝑖) = 𝑖𝑖, no transformation
is required and proceed to next i. If 𝑓𝑓(𝑖𝑖) ≠ 𝑖𝑖, apply the
smallest (𝑘𝑘 × 𝑘𝑘) Toffoli gate, 𝑘𝑘 = 2 to n in order to make
𝑓𝑓(𝑖𝑖) = 𝑖𝑖.

Table 1: Truth table of a (3 × 3) reversible function.

Input Output
 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖 𝑎𝑎𝑜𝑜 𝑏𝑏𝑜𝑜 𝑐𝑐𝑜𝑜

(0) 0 0 0 0 0 0 (0)
(1) 0 0 1 1 0 0 (4)
(2) 0 1 0 0 0 1 (1)
(3) 0 1 1 0 1 1 (3)
(4) 1 0 0 0 1 0 (2)
(5) 1 0 1 1 0 1 (5)
(6) 1 1 0 1 1 0 (6)
(7) 1 1 1 1 1 1 (7)

The choice of gate during each step of transformation is

crucial in order to maintain convergence. The gate chosen
in each step of transformation must not change the order of
bits of the previous steps. Consider the (3 × 3) reversible
function 𝑓𝑓 = ∑(0,4,1,3,2,5,6,7) in Table 1. The circuit which
is generated by following the basic transformation algo-
rithm is presented in Figure 2.

4 SF BASED SYNTHESIS APPROACH
Before describing our proposed approach, it is important to
observe a significant property of the function shown in Ta-
ble 1. The truth table of the function shows that for each
row, the number of 1s in the input is equal to the number of
1s in the output. Thus, the function is a conservative func-
tion. Our hypothesis is that a circuit realization for a con-
servative reversible function will be more efficient if we use
SF gates instead of NCT gates. Thus we propose a SF gate
based transformation approach. The underlying idea of SF-
based transformation synthesis is the same as the approach
described previously in this chapter. The difference is that

a 𝑎𝑎�

a

b

a

a b

a
b

c

n-1

n 𝑎𝑎�b𝑐𝑐̅...n-1

a
b

c

n-1

n

a

b

b

a

a

b

c

1 (0)

c (b)

b (c)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 48
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

instead of using the logic gates from the NCT gate family,
we use only SWAP and Fredkin gates to realize the trans-
formations. While NCT gates manipulate bits by inverting
the bits, SF gates interchange the bits when the control
points of these gates satisfy the necessary condition. Since a
conservative function has an equal number of 1s in the in-
put and the output, our hypothesis is that the interchange
of bits rather than the inversion of bits during the process
of transformation will generate efficient circuits. The trans-
formation based approach involves the mapping between
two values consisting of the same number of 1s. The output
of a SF gate consists of the same number of 1s as the input.
Thus, the SF gates will be more suitable and require fewer
logical operations than NCT gates for mapping one value
into another of a conservative function.

As in the NCT version, the proposed approach examines
one row of the truth table at each step. The objective is to
make 𝑓𝑓(𝑖𝑖) = 𝑖𝑖, for 𝑖𝑖 = 0 to 2𝑛𝑛 − 1, where 𝑖𝑖 is the 𝑖𝑖-th row of
a reversible function 𝑓𝑓 , and n is the number of in-
puts/outputs (bits) of the function. The following is the ba-
sis of SF gate base transformation approach.

Step 0: Since the function is a conservative function, the
first row of the truth table of the function will be 𝑓𝑓(0) = 0.
Thus, no transformation is required and go to step 1.

Step 1: For 𝑖𝑖 = 1: If 𝑓𝑓(1) = 1, no transformation is re-
quired. If 𝑓𝑓(1) ≠ 1, apply a SWAP gate in order to make
𝑓𝑓(1) = 1.

Step 2: Repeat for 𝑖𝑖 = 2 to 2𝑛𝑛 − 1: If 𝑓𝑓(𝑖𝑖) = 𝑖𝑖, no trans-
formation is required. If 𝑓𝑓(1) ≠ 1, apply a SWAP gate or
the smallest (𝑘𝑘 × 𝑘𝑘) Fredkin gate in order to make 𝑓𝑓(𝑖𝑖) = 𝑖𝑖,
where 𝑘𝑘 = 3 to 𝑛𝑛. One or more gates may be required in
order to achieve 𝑓𝑓(𝑖𝑖) = 𝑖𝑖.

Table 2: Transformation stages of the function in Table 1

using SF based synthesis

Output
Step 0 Step 1 Step 2 Step 3 Step 4

(i) (ii) (iii) (iv) (v)
a b C 𝑎𝑎𝑜𝑜 𝑏𝑏𝑜𝑜 𝑐𝑐𝑜𝑜 𝑎𝑎1 𝑏𝑏1 𝑐𝑐1 𝑎𝑎2 𝑏𝑏2 𝑐𝑐2 𝑎𝑎3 𝑏𝑏3 𝑐𝑐3 𝑎𝑎4 𝑏𝑏4 𝑐𝑐4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0
0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1
1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 --------- S(a,c) S(a,b) F(b;a,c) F(a;b,c)

We use the same function from Table 1 to demonstrate

the SF-based transformation synthesis. As before, the pro-
posed approach begins with the output of the function.
Table 2 shows the transformation stages. In this table S(a;b)
represents a SWAP gate with two targets, ‘a’ and ‘b’.
F(a;b,c) represents a Fredkin gate with a control point on
line, ‘a’, and two targets on lines ‘b’ and ‘c’. The resulting

circuit realization of the function from Table 1 is displayed
in Figure 3.

Figure 2: Circuit based on transformation based synthe-

sis

Figure 3: Circuit based on SF based synthesis

5 COMPARISON OF TRANSFORMATION BASED
APPROACHES

It is important to observe that the function in Table 1 is a
conservative function and Figures 2 and 3 show two circuit
designs for this function. In Figure 3, we have a gate count
of 4 as compared to a gate count of 12 for the circuit in Fig-
ure 2. The quantum cost of the implementation in Figure 3
is (2x3)+(2x5) = 16, where the quantum cost for the circuit
realization in Figure 2 is 28. The percentages of decrease in
gate count and quantum cost are 67% and 43% respectively,
which is a very significant improvement.

In order to compare the SF based transformation ap-
proach with NCT based transformation from a wider per-
spective, we have generated all possible (3 × 3) conserva-
tive reversible functions. We have realized all 36-(3 × 3)
conservative functions using both algorithms. The highest
percentage of reduction in gate count is 67% for more than
half of the (3 × 3) conservative reversible functions. The
ability of changing two bits at a time gives SF gates an ad-
vantage over the NCT gate family for realizing conserva-
tive reversible circuits.

SF based synthesis also performs better than NCT based
synthesis when comparing quantum cost. Among the 36
functions, we have achieved lower QC for almost 70% of
the functions. For the remaining functions, the QC is the
same for both approaches. There is not a single instance
where the NCT based synthesis performs better than our
proposed approach. The highest percentage of decrease in
quantum cost is 70% and the average percentage of reduc-
tion of quantum cost is 29%.

As mentioned above, the proposed transformation algo-
rithm using the SF gate family follows the greedy ap-
proach. We have designed our algorithm in this way in or-
der to offer a fair comparison, since the basic transfor-

a0

b0

c0

a0

b0

c0

at

bt

ct

at

bt

ct

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 49
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

mation based synthesis algorithm which is proposed in [8]
also follows the greedy approach. At every step of trans-
formation, the algorithm selects a gate which costs less in
terms of quantum cost. For example, if we observe column
(ii) of Table 2, we need to transform 100 into 010. There are
two choices for this mapping. We could use either a SWAP
gate 𝑆𝑆(𝑎𝑎, 𝑏𝑏) or a negative controlled Fredkin gate, 𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏).
The proposed SF gate based transformation selects a SWAP
gate, 𝑆𝑆(𝑎𝑎, 𝑏𝑏) because a SWAP gate has lower quantum cost
than a Fredkin gate. However, if we use a 𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏) at this
stage, we get a circuit which is presented in Figure 4. The
use of F 𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏) gate reduces the quantum cost from 16 to
13 as we compared with the circuit in Figure 3. Moreover,
one less gate is needed in this circuit realization.The circuit
in Figure 5 is even more simplified design for the reversible
function from Table 1. Figure 5 shows that the gate count is
2 and the quantum cost is 10. Now if we compare the gate
count and quantum cost of Figure 5 with that of the NCT
gate based basic transformation synthesis (Figure 2), the
gate count has been reduced from 12 to 2, a 6 times reduc-
tion. The quantum cost has been reduced from 28 to 10,
which is an improvement of almost a factor of 3.

Figure 4: Another circuit of the function in Table 1

Figure 5: More efficient circuit for function in Table 1

As mentioned above, the proposed transformation algo-
rithm using the SF gate family follows the greedy ap-
proach. We have designed our algorithm in this way in or-
der to offer a fair comparison, since the basic transfor-
mation based synthesis algorithm which is proposed in [8]
also follows the greedy approach. At every step of trans-
formation, the algorithm selects a gate which costs less in
terms of quantum cost. For example, if we observe column
(ii) of Table 2, we need to transform 100 into 010. There are
two choices for this mapping. We could use either a SWAP
gate 𝑆𝑆(𝑎𝑎, 𝑏𝑏) or a negative controlled Fredkin gate, 𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏).
The proposed SF gate based transformation selects a SWAP
gate, 𝑆𝑆(𝑎𝑎, 𝑏𝑏) because a SWAP gate has lower quantum cost
than a Fredkin gate. However, if we use a 𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏) at this
stage, we get a circuit which is presented in Figure 4. The
use of F 𝐹𝐹�(𝑐𝑐;𝑎𝑎, 𝑏𝑏) gate reduces the quantum cost from 16 to

13 as we compared with the circuit in Figure 3. Moreover,
one less gate is needed in this circuit realization.The circuit
in Figure 5 is even more simplified design for the reversible
function from Table 1. Figure 5 shows that the gate count is
2 and the quantum cost is 10. Now if we compare the gate
count and quantum cost of Figure 5 with that of the NCT
gate based basic transformation synthesis (Figure 2), the
gate count has been reduced from 12 to 2, a 6 times reduc-
tion. The quantum cost has been reduced from 28 to 10,
which is an improvement of almost a factor of 3.

We have also generated all possible 414720 conservative
(4 × 4) reversible function. However unlike the case of (4 ×
4) functions, there are some circuit realizations where the
gate count and quantum cost increase when using SF gate
based transformation synthesis. Among all the (4 × 4) con-
servative reversible functions, the quantum cost increases
for 27213 (6.5%) functions and the gate count increases for 2
functions. The highest percentage of reduction in gate
count by using our proposed synthesis algorithm is 87%
and the reduction in gate count, on average, is 61%. We
achieve the highest percentage of reduction of quantum
cost is 87%. The average percentage of decrease of quantum
cost over all 414720 functions is 35%.

6 COMPARISON OF SF BASED APPROACH WITH
EXACT SYNTHESIS APPROACH

We have also compared the results from our proposed SF-
based approach with the results from applying an exact
synthesis approach [10] available in RevKit [11]. The com-
parison is shown in Table 3. The exact approach results in a
circuit implementation with minimal gate count using the
NCT gate library. There is no known exact approach that
uses the SF gate library. There is not a single instance where
the exact synthesis generates circuits with lower GC than
the SF based transformation approach. The highest per-
centage of reduction in GC is 67%. However, the average
percentage of reduction of GC using the SF based synthesis
is 54%. The negative values in the table indicate the incre-
ment in QC using SF based synthesis over exact synthesis.
The QC increases in the case of 10 functions out of all 36
conservative functions. The highest percentage of reduction
in QC using our proposed synthesis approach is 67% and
the percentage of reduction in QC on average is 8%. The
reduction in GC can be explained by the fact that SF gates
require fewer operations to implement swaps, which are
the main operations carried out in conservative functions.
However in general, SF gates have higher QC than their
NCT equivalents, so there is less saving in QC. For exam-
ple, a SWAP gate 𝑆𝑆(𝑏𝑏, 𝑐𝑐) can be used in order to transform
(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 010 into 001. The GC and the QC for a single
SWAP gate are 1 and 3 respectively. However, two NCT
gates, 𝑇𝑇(𝑏𝑏; 𝑐𝑐) and 𝑇𝑇(𝑐𝑐; 𝑏𝑏), will be required in order to trans-
form (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 010 into 001. In this case GC and QC are 2.
Thus the GC is reduced by using the SF gate family, while
the QC (for this example) is not.

Table 3: Performance comparison of the minimal circuits

a0

b0

c0

at

bt

ct

a0

b0

c0

at

bt

ct
 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 50
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

generated using exact synthesis with the circuits generated
using SF gate based synthesis.

 Exact syn-

thesis
SF based
synthesis

Reduction Percentage of
decrease

No GC QC GC QC GC QC GC QC
1 6 14 3 13 3 1 50.00 7.14
2 6 10 2 8 4 2 66.67 20.00
3 6 14 3 13 3 1 50.00 7.14
4 6 10 2 8 4 2 66.67 20.00
5 3 3 1 3 2 0 66.67 0.00
6 4 8 2 8 2 0 50.00 0.00
7 6 10 3 11 3 -1 50.00 -10.00
8 7 15 4 16 3 -1 42.86 -6.67
9 6 10 3 11 3 -1 50.00 -10.00

10 6 6 2 6 4 0 66.67 0.00
11 6 10 3 11 3 -1 50.00 -10.00
12 7 15 4 16 3 -1 42.86 -6.67
13 6 14 3 13 3 1 50.00 7.14
14 6 10 2 8 4 2 66.67 20.00
15 3 3 1 3 2 0 66.67 0.00
16 6 10 2 8 4 2 66.67 20.00
17 6 14 3 13 3 1 50.00 7.14
18 4 8 2 8 2 0 50.00 0.00
19 6 10 3 11 3 -1 50.00 -10.00
20 6 6 2 6 4 0 66.67 0.00
21 6 10 3 11 3 -1 50.00 -10.00
22 7 15 4 16 3 -1 42.86 -6.67
23 6 10 3 11 3 -1 50.00 -10.00
24 7 15 4 16 3 -1 42.86 -6.67
25 3 3 1 3 2 0 66.67 0.00
26 6 10 2 8 4 2 66.67 20.00
27 6 14 3 13 3 1 50.00 7.14
28 6 10 2 8 4 2 66.67 20.00
29 6 14 3 13 3 1 50.00 7.14
30 4 8 2 8 2 0 50.00 0.00
31 3 15 1 5 2 10 66.67 66.67
32 4 20 2 10 2 10 50.00 50.00
33 3 7 1 5 2 2 66.67 28.57
34 4 20 2 10 2 10 50.00 50.00
35 3 7 1 5 2 2 66.67 28.57
36 0 0 0 0 0 0 0 0

7 CONCLUSTION AND FUTURE WORKS
Transformation based synthesis offers function realization
without including any additional garbage lines to circuits.
In this paper we have presented a transformation based
synthesis approach based on SF gates to realize conserva-
tive reversible functions. We have generated all possible 3-
bit and 4-bit reversible functions and realized these func-
tions with both our proposed approach and the approach
proposed in [8]. The approach presented in [8] is based on
the NCT gate families. Our experimental results suggest
that realization of conservative functions with SF gates is

more efficient than NCT gates in terms of GC and QC. We
have also compared the circuits generated using exact syn-
thesis with SF based synthesis for implementing 3-bit con-
servative functions. Experimental results show that SF
based synthesis generates significantly more efficient cir-
cuits than exact synthesis when comparing gate count, alt-
hough slightly less so when comparing quantum cost. This
is likely due to the high quantum costs of the SF gate fami-
ly. Our proposed SF based synthesis follows the principle
of the NCT transformation based synthesis presented in [8].
A NCT transformation based synthesis approach works by
mapping a reversible function into an identity function.
During the process of transformation the operations per-
formed at each stage must not affect the previous stages.
One or more logic gates are applied to perform the logical
operations at each stage. We have shown in Section 5 that
the choice of gates at each stage is very important in order
to achieve a simplified circuit.

The outcome of this work indicates that the synthesis
process in reversible logic could be more efficient if we
know the class of a reversible function in advance. There-
fore, classifying reversible functions and using the benefitts
of SF-gates in circuit realization for different classes of
functions will be an important area of future study. In addi-
tion, improving the gate selection process during each
stage of the transformation based synthesis is an another
important area of further research. Lastly, generating min-
imal circuits using SF based exact synthesis is an open area
of further research.

REFERENCES
[1] Michael P Frank. “Approaching the physical limits of computing”. In

Proceedings of 35th International Symposium on Multiple-Valued Logic,
IEEE, pp. 168–185, 2005.

[2] Michael P Frank. “Introduction to reversible computing: motivation,
progress, and challenges”. In Proceedings of the 2nd Conference on Com-
puting Frontiers, ACM, pp. 385–390, 2005.

[3] Dmitri Maslov and Gerhard W Dueck. “Reversible cascades with
minimal garbage”. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 23(11), pp. 1497–1509, 2004.

[4] Mehdi Saeedi and Igor L Markov. “Synthesis and optimization of
reversible circuits a survey”. ACM Computing Surveys (CSUR),
vol.45(2) PP. 21, 2013.

[5] Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P.
Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computations,” Physical Review A, vol. 52, no. 5, pp.
3457–3467, 1995.

[6] J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are
sufficient to implement the quantum fredkin gate,” Physical Review A,
vol. 53, no. 4, pp. 2855–2856, 1996.

[7] Md Asif Nashiry, Mozammel H. A. Khan and Jacueline E. Rice. “Con-
trolled and uncontrolled SWAP gates in reversible logic synthesis”,
International Conference on Reversible Computation. pp. 141-147, 2017.

[8] D Michael Miller, Dmitri Maslov, and Gerhard W Dueck. “A trans-
formation based algorithm for reversible logic synthesis”. In Proceed-
ings of the 40th annual Design Automation Conference. ACM, pp. 318–
323. 2003.

[9] D Michael Miller, Robert Wille, and Gerhard W Dueck. “Synthesizing

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 5, May-2019 51
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

reversible circuits for irreversible functions”. In 12th IEEE Euromicro
Conference on Digital System Design, Architectures, Methods and Tools,
DSD’09. pp 749–756, 2009.

[10] Daniel Große, Robert Wille, Gerhard W Dueck, and Rolf Drechsler.
“Exact multiple-control toffoli network synthesis with sat tech-
niques”. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol.28(5). pp. 703–715, 2009.

[11] Mathias Soeken, Stefan Frehse, Robert Wille, and Rolf Drechsler.
Revkit: “A toolkit for reversible circuit design”. Multiple-Valued Logic
and Soft Computing, vol. 18(1). pp. 55–65, 2012.

IJSER

http://www.ijser.org/

	1 Introduction and Motivation
	2 Background
	2.1 Reversible Logic
	2.2 Reversible Logic Gates
	2.3 Cost Metrics

	3 The Transformation Based Synthesis Approach
	4 SF Based Synthesis Approach
	5 Comparison of Transformation Based Approaches
	6 Comparison of SF Based Approach With Exact Synthesis Approach
	7 Conclustion and Future Works
	References

